- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Peng, Peisong (3)
-
Talbayev, Diyar (3)
-
Zhou, Jiangfeng (3)
-
Thapa, Grija (2)
-
Keshock, Elise (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Broken spatial and time reversal symmetries in materials often give rise to new emergent phenomena in the interaction between light and matter. The combination of chirality and broken time reversal symmetry in a magnetic field leads to magneto–chiral phenomena, such as the nonreciprocity of transmission. Here, we construct a terahertz hybrid metamaterial that combines the natural optical activity of a chiral metallic gammadion bilayer and the magneto-optical activity of semiconductor indium antimonide in a magnetic field. We report a resonant magneto–chiral effect that leads to polarization-independent nonreciprocal optical transmittance. Furthermore, we discover a magneto-optical Faraday effect that is resonantly controlled by the natural optical activity of the chiral gammadion bilayer. Unlike optical activity due to chirality, the novel Faraday effect is odd under time reversal. Both phenomena are activated by a modest magnetic field, which may open doors for their potential applications in polarization-independent optical isolation and highly efficient polarization control at terahertz frequencies.more » « less
-
Peng, Peisong; Thapa, Grija; Zhou, Jiangfeng; Talbayev, Diyar (, Optics Express)We report the observation of magneto-optical nonreciprocity in Faraday geometry in a hybrid metamaterial consisting of an Archimedean spiral metasurface and semiconductor InSb that serves as the magneto-optical medium. None of the metamaterial constituents possesses chirality, which is usually a necessary ingredient for optical nonreciprocity in natural materials when the light travels along the magnetic field direction. We also find that our metamaterial can serve as an optical element for polarization control via magnetic field. Another significant property of our hybrid metamaterial is the emergence of the four different transmittance states, which are observed for the four combinations of the positive and negative magnetic field and the direction of the wavevector of light.more » « less
-
Keshock, Elise; Peng, Peisong; Zhou, Jiangfeng; Talbayev, Diyar (, Optics Express)The Faraday effect due to the cyclotron resonance of conduction electrons in semiconductor InSb allows for nonreciprocity of transmitted light in our Faraday THz isolator operating in the presence of a small magnetic field. We select InSb as an efficient medium for our isolator due to its high electron mobility, low electron effective mass, and narrow band gap. Experimental measurements of the isolator performance indicate a maximum achieved isolation power of 18.8 dB with an insertion loss of −12.6 dB. Our optical analysis of the device points to a remarkablenonreciprocalFabry-Perot effect in the magneto-optical InSb layer as the origin of the multi-fold isolation enhancement. This nonreciprocity occurs as the Fabry-Perot reflections in the forward direction add constructively and enhance the transmittance at certain frequencies, while the Fabry-Perot reflections in the backward direction add destructively and suppress the transmittance at the same frequencies.more » « less
An official website of the United States government
